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Résumé. La modélisation des précipitations est d’un grand intérêt pour l’analyse des
risques d’inondation. Nous proposons de modéliser la distribution des précipitations ur-
baines mesurées à haute résolution spatiale et temporelle par le réseau de pluviomètres de
l’Observatoire Urbain de Montpellier sur quatre années de mesures. Nous les combinons avec
des données de réanalyse radar pour étendre notre analyse à une période plus longue avec une
résolution moins fine. Pour cette modélisation, nous considérons simultanément les pluies
modérées et intenses en utilisant l’Extended Generalized Pareto Distribution (EGPD) pour
éviter la sélection d’un seuil, souvent délicat en statistiques des extrêmes, mais aussi pour
réduire la complexité de l’estimation des paramètres. Nous modélisons également la dépen-
dance spatio-temporelle en incorporant l’advection à travers un processus spatio-temporel de
Brown-Resnick. Nous utilisons des indices d’autocorrélation extrême, pour montrer sa vari-
abilité entre les différents sites et à différents temps des mesures. Nous mettrons en évidence
l’importance de considérer l’advection en comparant le modèle obtenu à un modèle séparable
plus simple.

Mots-clés. Théorie des valeurs extrêmes, modélisation de précipitation, EGPD, haute
résolution spatio-temporelle, modélisation de la dépendance, processus de Brown-Resnick,
advection

Abstract. Precipitation modeling is of great interest for flood risk analysis. We pro-
pose to model the distribution of urban precipitation measured at high spatial and temporal
resolution by the Montpellier Urban Observatory rain gauge network over four years of mea-
surements. We combine them with radar reanalysis data to extend our analysis to a longer
period with less fine resolution. For our modeling approach, we simultaneously consider mod-
erate and intense rainfall by using the Extended Generalised Pareto Distribution (EGPD)
to avoid explicit threshold selection, often tricky in extreme statistics, and to reduce the
complexity of parameter estimation. We also model the spatio-temporal dependence by in-
corporating advection through a spatio-temporal Brown-Resnick process. We use indices of
extreme autocorrelation, to show its variability between locations in relation to their spatial
distances and to the temporality of the measurements. We will highlight the importance of
including advection by comparing it with a simpler separable model.

Keywords. Extreme value theory, rainfall modeling, EGPD, high spatio-temporal reso-
lution, dependence modeling, Brown-Resnick process, advection
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1 Study

Managing flood risk requires a precise understanding of precipitation patterns. Severe flood-
ing can indeed occur after extreme rainfall events, but also after moderate ones, for example
if the latter last a long time or if the ground is already saturated with water. The risk is
even greater in urban areas where water absorption is reduced by impervious surfaces. This
shows the importance of understanding the behaviour of both extreme and moderate rainfall
events and their spatio-temporal variability.

Figure 1: Rain gauges location

We focused our work on a specific area in Mont-
pellier, south of France. Montpellier is known to be
frequently exposed to significant rainfall events known
as Mediterranean episodes, especially during the au-
tumn season. This type of event is characterised by a
large amount of rainfall in a short period of time and
is very localised, causing local urban flooding. This
encourages us to build a model which takes into ac-
count this high spatio-temporal resolution. Our study
relies on 17 rain gauges in Montpellier in the water
catchment of the Verdanson, a tributary of the Lez
(see Figure 1). The rainfall measurements from these
stations are provided by the urban Observatory of
the HydroScience Montpellier (OHSM) (see Finaud-
Guyot et al. (2023)). They cover the period from
2019 to 2022 and are given with a high temporal res-
olution, recorded minute by minute. In order to min-
imise measurement errors and to avoid very strongly
discretized values, the data are aggregated in 5-minute intervals, which allows us to maintain
a high temporal resolution. This fine resolution implies that we obtain a very small propor-
tion of non-zero values: they represent only 1.2% of the data. In terms of spatial granularity,
we also have a high resolution with a distance between two stations ranging from 77 to 1531
meters. We want to model the spatio-temporal characteristics of these rainfall data to better
understand the rainfall behaviour over this area.

In order to refine our modeling, we consider another dataset: the French COMEPHORE1

Mosaic from Météo France (see Tabary et al. (2012)). These reanalysis data, which combine
radar and rain gauge measurements over France, have a lower resolution than the previous
OHSM data. The rainfall measurements are provided with a spatial resolution of 1 km2 per
pixel. Each pixel represents the cumulative rainfall over one hour, and the time period ranges
from 1997 to 2021. We extract measurements pixels on the Montpellier area.

Notations: Let S ⊂ R2 be our spatial domain and let T ⊂ R+ be our temporal domain
with equidistant time points.

1COmbinaison en vue de la Meilleure Estimation de la Précipitation HOraiRE, dataset is available on
AERIS platform (https://radarsmf.aeris-data.fr/)
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2 Univariate modeling

In this section, we focus on characterizing the behaviour of moderate and extreme precip-
itation at individual locations. In a univariate framework, let Xs be the random variable
representing the amount of rainfall in millimeters measured at a given location s ∈ S.

In order to take the full range of precipitation into account, we use the Extended Gener-
alized Pareto Distribution (EGPD) introduced by Naveau et al. (2016). This distribution
provides flexibility in both the bulk and the tail of the distribution, while having a tail be-
haviour similar to the Generalized Pareto Distribution (GPD) suggested by Extreme Value
Theory. This family of distributions allows one to avoid explicit threshold selection and it is
particularly efficient for precipitation modeling where we often need the full marginal distri-
bution to model rainfall space-time aggregates leading to flood events. This distribution is a
transformation of the classical GPD which corresponds to the limit distribution of threshold
exceedances as the threshold u tends to infinity with shape parameter ξ and scale parameter
σu. In a non-asymptotic setting, for a fixed threshold u, large enough, the corresponding
cumulative distribution function is Hξ and we have the approximation

P (Xs − u > y|Xs > u) ≈ Hξ

(
y

σu

)
=


(
1 + ξ y

σu

)−1/ξ

+
if ξ ̸= 0 ,

e−
y
σu if ξ = 0 ,

with a+ = max(a, 0). The cumulative distribution function of the EGPD is given by adding a
transformation G to Hξ. The efficient and simpler form is G(x) = xκ , κ > 0. The parameter
κ parameter controls the lower tail behaviour. To reduce the impact of very low values, a
small left censoring is added locally to better fit this distribution to real rainfall data. This
censoring was chosen according to the smaller normalized root mean square error at each
location (see Haruna et al. (2023)).

For both datasets described above, over similar time periods and similar space locations,
we obtain a good fit of the EGPD margins. We have similar estimated parameters for all
sites within the same dataset. The boxplots of the estimated EGPD parameters for all
the locations and the theoretical EGPD density with mean parameter estimates are given
in Figure 2. We have close tail parameter estimates for the two datasets but the hourly
one gives a smaller ξ estimate. Indeed, extreme events are smoothed within hourly data.
Therefore, the tail of the distribution can appear heavier for OHSM data with a higher ξ
parameter. Then, we have a higher scale parameter estimate for the COMEPHORE data.
This can be explained by the fact that these rain events are spread over a longer period of
time and require a larger σ parameter to fit the distribution. Finally, there is an expected
difference between the κ estimates, which is directly related to the time scale difference. In
fact, a resolution of 5 minutes gives more low rainfall values for OHSM data, leading to a
lower κ parameter.

3



(a) Parameter estimates (b) Mean density estimation

Figure 2: EGPD fit for both datasets over a similar period of 4 years. The COMEPHORE
data correspond to 21 pixels around the location of the OHSM rain gauges. (a) boxplots of
the parameter estimates for each dataset; (b) theoretical EGPD density with the mean of
parameter estimates for each dataset.

3 Spatio-temporal dependence

3.1 Spatio-temporal process for rainfall modeling

Now that we have modeled the marginal behaviour of precipitation in the univariate analysis,
the next step is to consider the spatio-temporal dependence. To understand the dependence
structure of rainfall events, several standard asymptotic models exist such as max-stable
and Pareto processes developed in Davison et al. (2012), Ferreira and De Haan (2014)
and Dombry and Ribatet (2015). It seems that the Brown-Resnick process, introduced in
Kabluchko et al. (2009), is the most commonly used for spatial and spatio-temporal mod-
eling, especially for precipitation, with its dependence structure flexibility defined in terms of
a variogram function. It is a stationary max-stable class of random fields based on Gaussian
processes with stronger regularity properties that make it more suitable for modeling extreme
events. Thanks to its structure, there are nice links with classical geostatistical properties.

Let X = {Xs,t | (s, t) ∈ S × T } be a strictly stationary isotropic Brown-Resnick pro-
cess representing our spatio-temporal amounts of rainfall. Then, as defined in Buhl and
Klüppelberg (2018), we have the following representation

Xs,t =
∞∨
j=1

ξje
W j

s,t−γ(s,t)

where ξj is a point of a Poisson process with intensity ξ−2dξ. The processes W j are inde-
pendent replicates of W = {Ws,t | (s, t) ∈ S × T }, an underlying Gaussian spatio-temporal
process with stationary increments and with a semivariogram γ defined by

2γ(s, t) = V ar (Ws,t −W0,0) .
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The semivariogram γ can be used to determine the one of X. In fact, the Brown-Resnick
process X is defined by the underlying Gaussian process W , so that the spatio-temporal
dependence structure of X is directly determined by the one of W . So our goal is to find
a way to model this measure of dependence in order to get information about the overall
distributional dependence of X. In order to do this, we look at the space-time extremogram,
which will be expressed as a function of the variogram. This measure gives information
about the extreme spatio-temporal dependence of a spatio-temporal process by looking at
the simultaneous excesses for each pair of locations separated by a spatial lag at two different
times separated by a temporal lag. So, let ΛS ⊂ R2 and ΛT ⊂ R+ be sets of spatial and
temporal lags respectively. Then, with the definition given in Coles et al. (1999), we can
define the extremal dependence measure, in a spatio-temporal context, for h ∈ ΛS , τ ∈ ΛT
and q ∈ [0, 1[ as

χ (h, τ) = lim
q→1

χq (h, τ) , with χq (h, τ) = P(X∗
s, t > q | X∗

s+h,t+τ > q) ,

where for any s ∈ S and any t ∈ T , X∗
s, t is the uniform rank transformation of Xs, t. As

explained in Davis et al. (2013), the bivariate distribution of the max-stable process X is
given by

P (Xs, t ≤ x1, Xs+h, t+τ ≤ x2) = exp
(
−Vγ(h,τ) (x1, x2)

)
, x1, x2 > 0 ,

with

Vγ(h,τ) (x1, x2) =
1

x1

ϕ

 log x2

x1

2
√

1
2
γ (h, τ)

+

√
1

2
γ (h, τ)

+
1

x2

ϕ

 log x1

x2

2
√

1
2
γ (h, τ)

+

√
1

2
γ (h, τ)


where ϕ is the standard normal distribution function. For max-stable processes, this last
function Vγ(h , τ) has been linked to the extremogram. From Coles et al. (1999), we have

χ (h, τ) = 2− Vγ(h,τ) (1, 1) .

Therefore, we obtain the spatio-temporal extremogram of the max-stable process of Brown-
Resnick X, given by

χ(h, τ) = 2

(
1− ϕ

(√
1

2
γ(h, τ)

))
, h ∈ ΛS , τ ∈ ΛT . (1)

where ϕ is the standard normal distribution function and γ is a stationary and isotropic
variogram. With this expression we can obtain information about the overall distribution
dependence over the spatio-temporal semivariogram γ.

3.2 Extremal dependence with additively separable variogram

We first model the spatio-temporal dependence with an additively separable structure, which
facilitates parameter inference while providing a relatively simple but useful model that com-
bines spatial and temporal dependence. To do this, we use the strategy developed in Buhl
and Klüppelberg (2018).
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We assume that we have a variogram with additive separability, so that we can get a
linear parameterisation of the theorical extremogram with an appropriate transformation.
Thus, we can write our spatio-temporal variogram, with 0 < α1, α2 ≤ 2 and β1, β2 > 0, as
1
2
γ(h, τ) = β1∥h∥α1 + β2τ

α2 . Then, the theorical spatio-temporal extremogram of X is given
by

χ (h, τ) = 2
(
1− ϕ

(√
β1∥h∥α1 + β2τα2

))
.

From equation (1), we have

1

2
γ(h, τ) =

(
ϕ−1

(
1− 1

2
χ (h, τ)

))2

and this leads to the transformation η (χ) = 2 log
(
ϕ−1

(
1− 1

2
χ
))

which gives the following
expressions with the variogram parameters. For the spatial case, by setting the time lag to
0, we obtain

η (χ (h, 0)) = log (β1) + α1 log (∥h∥) =: c1 + α1xh.

For the temporal case, by setting the spatial lag to 0, we obtain

η (χ (0, τ)) = log (β2) + α2 log (τ) =: c2 + α2xτ .

Therefore, with the separability assumption, we can separate the spatial and the temporal
cases into two linear expressions so that we can use a Weighted Least Squares Estimation
(WLSE) for parameter inference on the spatial and the temporal empirical extremograms.
A summary of the procedure is given by Figure 3.

Spatio-temporal

χ(h, τ) = 2
(
1− ϕ

(√
1
2
γ(h, τ)

))

Spatial
η (χ(h, 0)) = log β1 + α1 log∥h∥

=: c1 + α1xh

Temporal
η (χ(0, τ)) = log β2 + α2 log τ

=: c2 + α2xτ

Transformation:
η(χ) = 2 log

(
ϕ−1

(
1 − 1

2
χ
))

WLSE

(
ĉi
α̂i

)
= argminci,αi

∑
xwx (η (χ̂)− (ci + αix))

2

Figure 3: Procedure with the separability assumption on the spatio-temporal variogram
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Empirical spatial extremogram

To estimate the spatial extremogram, we first define a spatial structure in an isotropic
framework. For the smaller dataset, the OHSM one, we define a set of equifrequent classes
Ch for each spatial lag h ∈ ΛS which leads us to the set of all pairs of locations within each
distance class as

N(h) =
{
(si, sj) ∈ S2

∣∣ ∥si − sj∥ ∈ Ch

}
.

For the largest COMEPHORE dataset, we have a spatial grid and we can define a set that
contains all pairs of locations for the same spatial lag h ∈ ΛS as

N(h) =
{
(si, sj) ∈ S2

∣∣ ∥si − sj∥ = ∥h∥
}
.

Then for a fixed t ∈ T and for any (si, sj) ∈ N(h), a natural estimator of the spatial
extremogram is

χ̂(t)
q (h, 0) =

1
|N(h)|

∑
i,j | (si,sj)∈N(h) 1{

X∗
si,t

>q ,X∗
sj ,t

>q
}

1
|S|
∑|S|

i=1 1{X∗
si,t

>q}
,h ∈ ΛS

where q is a high quantile (99.8%).

Empirical temporal extremogram

Regarding the temporal case, for a fixed s ∈ S and for any t ∈ T , a natural estimation
of the temporal dependence measure is

χ̂(s)
q (0, τ) =

1
T−τ

∑T−τ
k=1 1{X∗

s,tk
>q ,X∗

s,tk+τ>q}

1
T

∑T
k=1 1{X∗

s,tk
>q}

, τ ∈ ΛT

where q is a high quantile (99.8%) and tk ∈ {t1, . . . , tT} ⊆ T .

Spatial and temporal variogram estimation

We apply the described procedure on OHSM data to infer the variogram parameters. Then
we obtain the final estimation of the spatial variogram γ̂(h, 0) = β̂1∥h∥α̂1 and the temporal
variogram γ̂(0, τ) = β̂2τ

α̂2 , illustrated in Figure 4. The spatial variogram has an exponential
form, indicating a continuous decrease in spatial correlation with distance, without reaching
an apparent range. This suggests, as expected, that the rainfall data continue to show some
degree of spatial correlation for larger distances. However, even for very small distances,
there is variability and a decrease in dependence. The temporal variogram shows an almost
linear relationship, indicating temporal variability within the rainfall data. The linear form
suggests that the dependence between observations decreases proportionally with the time
even over short time periods. This was expected because rain clouds move with time and
rain events can be brief. These variograms show the relevance of our model at such a fine
spatio-temporal scale.
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(a) Spatial variogram (b) Temporal variogram

Figure 4: Estimation of the spatial and temporal variograms on OHSM data, where ∥h∥
units are kilometers and τ units are minutes

However, assuming a separable structure is a strong hypothesis in our modeling. We
looked at the spatial variogram at different fixed time lags (not shown here) and see that a
non-separable structure may be required. So we want to relax this hypothesis to get a better
dependence model.

3.3 Adding advection to the dependence model

When dealing with precipitation, it may be relevant to consider the role of advection. In
meteorology, this is the horizontal transport of properties such as heat or moisture by the
movement of air masses such as wind and clouds. It can therefore influence the behaviour of
precipitation. In fact, due to winds, there is a spatial and temporal movement of clouds and
precipitation with a specific direction and speed. This can lead to characteristic dependence
patterns in precipitation, which we can capture by appropriate parametric structures with
the space-time variogram.

Let V ∈ R2 be the advection vector. It can be defined by its polar coordinates (SV , θV ),
where SV corresponds to a velocity and θV to a direction angle. As said in Lepioufle et al.
(2012), if we consider the Lagrangian referential L, moving with the air masses, we have a link
between the Lagrangian semivariogram and the Eulerian semivariogram with the advection:
γL (h, τ) = γ (h− V .τ, τ). Then if we add this quantity in our separable model presented in
3.2, we obtain

1

2
γ (h− V .τ, τ) = β1∥h− V .τ∥α1 + β2τ

α2 .

With this expression we have relaxed the previous strong hypothesis of separability and
then we cannot use the WLSE approach to infer the 6 parameters of the spatio-temporal
variogram. Instead, a parameter optimization method will be used.

Let Θ be the vector of parameters to be estimated i.e. Θ = (β1, β2, α1, α2, SV , θV ) and let
m be the total number of space-time pair combinations. Let Ep = E(si,sj),(ti,tj) be the indicator
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of simultaneous excess for a pair of locations (si, sj) ∈ S2 and a pair of times (ti, tj) ∈ T 2.
We have Ep = 1{X∗

si,ti
>q |X∗

sj ,tj
>q} and then E (Ep) = χp,Θ. Hence Ep follows a Bernoulli

distribution with a probability parameter χp,Θ. So we have
∑m

p=1 Ep ∼ B(np ; χp,Θ) where
np is the total number of records for the p-th combination. Hence, with E = (Ep)p∈{1, ...,m},
the log-likelihood in order to get parameter estimates is

log (LΘ (E)) =
m∑
p=1

[
log

(
np

kp

)
+ kp logχp,Θ + (np − kp) log(1− χp,Θ)

]
,

The separability approach, described in 3.2, gives us an initial estimate of Θ with a zero
advection. These would be the initial parameters for the log-likelihood maximisation. We
apply this procedure to both datasets to obtain an overall estimate of a constant advection
over the study area and hence we obtain a spatio-temporal variogram estimate.

4 Perspectives

Until now, both rainfall data (OHSM and COMEPHORE) were studied separately. The
first dataset corresponds to 17 random spatial points with a high spatio-temporal resolution,
while in the other we have a regular spatial grid with a lower spatial and temporal resolution.
In future work, we want to combine the two datasets to obtain more regular spatial point
measurements across the study area, while maintaining the fine spatio-temporal resolution.
To do this, we will explore a downscaling approach that will also allow us to compare the
two datasets. Downscaling involves dividing each spatial and temporal intervals of the higher
resolution dataset into a number of smaller intervals. This can be done by interpolating, or
by using statistical or physical models.

In addition, we will look at other datasets, such as the basic climate data from Météo
France2, which provides rainfall amounts with a resolution of 6 minutes for a station in
Montpellier. This dataset also provides wind information with magnitude and direction,
which may be relevant for our analysis. Indeed, we currently have a dependence model with
constant advection, which is a strong hypothesis. Taking this wind data into account in the
model could lead to a more accurate estimation of the advection in space and time.
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