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GENERAL CONTEXT - MONTPELLIER, FRANCE

» Mediterranean events, localized rainfall

» Urban area, flood risks

MONTPELLIER
.

Floods in Montpellier, September 2022 and August
2015 (Midi Libre)
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RAIN GAUGES NETWORK

1000 m

» Study area: Verdanson water catchment

» Source: Urban observatory of HydroScience

exes Montpellier (HSM)?
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> Spatial resolution: 77 m to 1531 m

IFINAUD-GUYOT et al., 2023

S = {17 rain gauges} C R and T C Ry
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MODELING UNIVARIATE PRECIPITATION
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> Generalized Pareto Distribution (GPD)?

X|X>u~ He withé€R,0>0.

GPD(¢&,0,u)

2p1ckANDs 111, 1975
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MODELING UNIVARIATE PRECIPITATION
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> Extended Generalized Pareto Distribution (EGPD)?

X ~ G(Hg) with G(x) =x", k>0

——
EGPD(¢,0,k)

3NAVEAU et al., 2016
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EGPD riTTING
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EGPD fitting for two rain gauges, CRBM (left) and CNRS (right) with left-censoring and 95% Cl
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SPATIO-TEMPORAL DEPENDENCE MODELING

Precipitation

Univariate

Dependence
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SPATIO-TEMPORAL DEPENDENCE MEASURES

Rainfall random field: X = {X, ., (s,t) € S x T}, stationary and isotropic.

Let As C R% and A7 C Ry be sets of spatial and temporal lags respectively.
+ g
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SPATIO-TEMPORAL DEPENDENCE MEASURES

Rainfall random field: X = {X, ., (s,t) € S x T}, stationary and isotropic.

Let As C R% and A7 C Ry be sets of spatial and temporal lags respectively.
+ g

Variogram (MATHERON, 1963)

1
’Y(h7 T) = Evar(Xs,t - Xs+h,t+-r)

e Quantifies variability

e Higher v(h,7) — weaker dependence

hels, 7 €Nt
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SPATIO-TEMPORAL DEPENDENCE MEASURES

Rainfall random field: X = {X, ., (s,t) € S x T}, stationary and isotropic.

Let As C Ri and A1 C Ry be sets of spatial and temporal lags respectively.

Variogram (MATHERON, 1963)
1
’Y(h, T) = Evar(Xs,t - Xs+h,t+-r)

e Quantifies variability

e Higher v(h,7) — weaker dependence

h e As, 7€ A, X, uniform margins.

Extremogram (DAvIS and MIKOSCH, 2009)

X(h7T) - Ilm P(Xs*,t > q | Xs*+h,t+‘r > q)
q—1

e Measures tail dependence

e Higher x(h,T) — stronger dependence
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Rainfall at CNRS (mm)
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Rainfall at Polytech (mm)
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r-PARETO PROCESS

Definition (de FONDEVILLE and DAVISON, 2018)

For all s € S and t € T, a risk function r(X) = X4,
_ d . _ e
U Xt | Xegy > U D Yer with Yo, = Ry pe/Vst™Wooto—2(s=s0,t=t0)

where (So, to) is a space-time location, u is a high threshold, Rs: ~ Pareto(1), Ws . is a Gaussian
process.

Dependence measures

15
L

» r-variogram:

1
B Ye(h,T) = Evar(WSoyfo - W50+h,t0+7')

Rainfall (mm)
1

> r-extremogram:

xr (B, 7) = lim P(Xg sh.e00+ > q)
q—1
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DEPENDENCE MODELING

Spatio-temporal extremogram with a Brown-Resnick dependence

Let h € As and 7 € Ay. We have

x(h,7) =2 (1 s ( b(hﬂ))

with ¢ the std normal c.d.f. and ~ the variogram of W.
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DEPENDENCE MODELING

Spatio-temporal extremogram with a Brown-Resnick dependence

Let h € As and 7 € Ay. We have

x(h,7) =2 (1 s ( bum))

with ¢ the std normal c.d.f. and ~ the variogram of W.

Separable model: Fractional Brownian motion with additive separability.

h7T [e3 [e3
WD) _ g + kel

> Efficient estimation using WLSE (BUHL et al., 2019)

> Not realistic
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DEPENDENCE MODELING

Separable model
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DEPENDENCE MODELING

Separable model
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DEPENDENCE MODELING

Separable model
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DEPENDENCE MODELING

Separable model Non-separable model
[ J [ J [ J [ J [ J [ J [ J [ J
#4E2
[ J [ J [ J [ J [ J [ J [} [ J
t+1
[ J [ J [ J [ J [ J [} [ J [ J

t+2 /
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DEPENDENCE MODELING

Non-separable model
Towards more realistic modeling: introduce

advection V to relax separability ° ° ° °
’VL(th) :’Y(h*TV,T) t+2
[ J [ J [} [ J
1 [e3 [e%
= E’W_(h,T)Zﬁﬂ‘h—TVH L+ Bo|T|*? t+1
[ J [} [ J [ J
» Parameters: @ = (b1, B2, a1, a2, V) " ﬂ
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PARAMETER ESTIMATION WITH ADVECTION

Goal: Estimate variogram parameters @ = (51, S2, a1, a2, V)

Joint exceedances count

Kn,-(u) = Z Z 11X, >0, Xs) >0}

(si»sj)EN(h) (ti, ) EN(T)

Asymptotic distribution (large u) on r-Pareto:

Kinw~B| Y #{s:(s,5) € N(h)}, xr.0(h,7)
(so,t0)ER
with
» R is a subset of spatio-temporal conditioning points
> N (h) the set of pairs of sites separated by h
> N(7) the set of pairs of times separated by T
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PARAMETER ESTIMATION WITH ADVECTION

Asymptotic distribution (large u) on r-Pareto:

Kinw~B| Y #{s:(s,5) € N(h)}, xr.0(h,7)

(s0,t0)ER

Composite log-likelihood maximization

< D Y Y kelogxre(hT) + (1 kee)log(l - xro(h,T))

(s0,t0)ER (s,50)EN (h) (t,t0) EN(T)

with ks ¢ = x>, Xsg, 1 >uds for large u

» Optimization: maximization of £¢(@) with respect to ©
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VALIDATION ON SIMULATIONS
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Parameter estimation on 100 simulations of 1000 replicates of r-Pareto processes with 25 sites and 30
time observations
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CONCLUSION

Precipitation

Stochastic precipitation generator

Univariate

Dependence
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Precipitation

Stochastic precipitation generator

Univariate

Dependence

Wind
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CONCLUSION

e S GO LI L L EL L ~{ Precipitation
[ Dry ] [Moderate] [ Extreme ]

Univariate

Dependence

-7 Wind
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Rainfall (mm)

RAINFALL DATA - HSM
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Rainfall amounts on CNRS and Polytech rain gauges
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ADDITIONAL DATA

Pixels of Tkm x Tkm

» Source: COMEPHORE, Météo France
> Time period: [1997,2023[
» Temporal resolution: Every hour

» Spatial resolution: 1 km?

More consistent data: Both datasets + Neural Network Downscaling.
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MODELING BOTH MODERATE AND EXTREME PRECIPITATION

Generalized Pareto Distribution —> Extended GPD*

—_a\=VE |
— [(x—u 1L JE = if €#£0, X
(5 - {1 =6 (1 (7).
e = if€=0, o
where a; = max(a,0), 0 >0, x —u >0 where G(x) =%, = >0

» Models extreme precipitation » Models moderate and extreme precipitation

» Depends on a threshold choice » Avoids a threshold choice

4NAVEAU et al., 2016
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ESTIMATION OF THE SEPARABLE VARIOGRAM PARAMETERS

Case of additive separability: W(Z’T) = B1||h]|** + B2|T|*2, 0< 1,02 <2, B1,B: >0

Spatio-temporal

x(h, ) =2 (1 9 ( T, T)))

- ~
- ~
- ~
- ~
- ~
- ~

7 Transforma}ti s
(x) =2log (67 (1— 3x) )~

- ~
- ~
- ~

2 S

Spatial Temporal
n(x(h,0)) = log B1 + cu log|lh||, h € As n(x(0,7)) =log B2 + caalog 7, T € A
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ESTIMATION OF THE SEPARABLE VARIOGRAM PARAMETERS

Case of additive separability: 27 = By [|[|*t + B|7|°2, 0 <asa2 <2, B, fe >0

Spatio-temporal

xthr) =2 (1= (/) )

- ~
e ~
z ~
e ~
- ~

_-7  Transformation: "~
_m(x) = 2log (67" (1 - §x)) -~

- ~
- ~
- ~
- ~

2 <

Spatial Temporal
7 (x(h,0)) :=ca + caxn, h€As 7 (x(0,7)) := e + a2xr, T € A

Weighted Least Squares Estimation (WLSE)

(;i%) = argming; o, ZX Wx ("7 (;(\) = (@4 t)é,-x))2

14/14



IAL DEPENDENCE ESTIMATION

Empirical spatial extremogram

For a fixed t € T and g a high quantile,

Transformation and WLSE

= Ty z =
[Np| iJ|(sj ;) ENp {Xsi,t>q’xsj,t>q}

(1) _
Xy (h,0) = . i
17 i Lixg o)
where Cj, are equifrequent distance classes and
Ny = {(Shsj) €s? | lIsi = sill € C,,} :
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Spatial variogram (h, 0) = 23| h[|*t
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TEMPORAL DEPENDENCE ESTIMATION

Empirical temporal extremogram

For a location s € S, a high quantile g and t, € {t1,...,tr}, Transformation and WLSE
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Temporal variogram fy\(O, 7)) = 2,73’\2\7‘\“2
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PARAMETER ESTIMATION WITH ADVECTION

Composite log-likelihood maximization
(@) Y > D keclogxre(h,T)+ (1 — ki) log(1 — xr0(h, 7))
(s0,t0)ER (s,50)EN(h) (t,t0)EN(T)

with ks ¢ = Lix o> u, Xeg, 1 >0} for large u

Wind-informed advection:

Force (m/s)
>0

! gzr V =n-|Vu|™ -sign(Vw), n1,m2>0
= 0 = (b1, B2, a1, @2, 1M1, 12)
: with V,, real wind data.
Wind in tg

14/14



	Data
	Univariate model
	Spatio-temporal dependence
	Appendix
	References


