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General context - Montpellier, France

Floods in Montpellier, September 2022 and August
2015 (Midi Libre)

▶ Mediterranean events, localized rainfall
▶ Urban area, flood risks
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Rain gauges network

S = {17 rain gauges} ⊂ R2 and T ⊂ R+

▶ Study area: Verdanson water catchment

▶ Source: Urban observatory of HydroScience
Montpellier (HSM)1

▶ Time period: [2019, 2023[

▶ Temporal resolution: 5 minutes

▶ Spatial resolution: 77 m to 1531 m

1Finaud-Guyot et al., 2023
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Modeling Univariate Precipitation

u

Time

Rainfall X > 0

Extreme ∼ GPD

▶ Generalized Pareto Distribution (GPD)2

X | X > u ∼ Hξ︸︷︷︸
GPD(ξ,σ,u)

with ξ ∈ R, σ > 0.

2Pickands III, 1975
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Modeling Univariate Precipitation

u = 0 Time

Rainfall X > 0

Moderate and Extreme
∼ EGPD

▶ Extended Generalized Pareto Distribution (EGPD)3

X ∼ G(Hξ)︸ ︷︷ ︸
EGPD(ξ,σ,κ)

with G(x) = xκ, κ > 0

3Naveau et al., 2016
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EGPD fitting

EGPD fitting for two rain gauges, CRBM (left) and CNRS (right) with left-censoring and 95% CI
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Spatio-temporal dependence modeling

Precipitation

Moderate Extreme

EGPD GPD

Univariate

Dependence
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Spatio-temporal dependence measures

Rainfall random field: X = {Xs,t , (s, t) ∈ S × T }, stationary and isotropic.

Let ΛS ⊂ R2
+ and ΛT ⊂ R+ be sets of spatial and temporal lags respectively.

Variogram (Matheron, 1963)

γ(h, τ) = 1
2Var(Xs,t − Xs+h,t+τ )

• Quantifies variability
• Higher γ(h, τ) → weaker dependence

h ∈ ΛS , τ ∈ ΛT , X∗
s,t uniform margins.

Extremogram (Davis and Mikosch, 2009)

χ(h, τ) = lim
q→1

P(X ∗
s,t > q | X ∗

s+h,t+τ > q)

• Measures tail dependence
• Higher χ(h, τ) → stronger dependence
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r-Pareto process

Definition (de Fondeville and Davison, 2018)
For all s ∈ S and t ∈ T , a risk function r(X) = Xs0,t0 ,

u−1Xs,t | Xs0,t0 > u d−→ Ys,t with Ys,t = Rs,teWs,t −Ws0,t0 −γ(s−s0,t−t0) ,

where (s0, t0) is a space-time location, u is a high threshold, Rs,t ∼ Pareto(1), Ws,t is a Gaussian
process.

Dependence measures
▶ r -variogram:

γr (h, τ) = 1
2Var (Ws0,t0 − Ws0+h,t0+τ )

▶ r -extremogram:

χr (h, τ) = lim
q→1

P(X ∗
s0+h,t0+τ > q)
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Dependence modeling

Spatio-temporal extremogram with a Brown-Resnick dependence
Let h ∈ ΛS and τ ∈ ΛT . We have

χ(h, τ) = 2

(
1 − ϕ

(√
1
2γ(h, τ)

))
with ϕ the std normal c.d.f. and γ the variogram of W .

Separable model: Fractional Brownian motion with additive separability.

γ(h, τ)
2 = β1∥h∥α1 + β2|τ |α2

▶ Efficient estimation using WLSE (Buhl et al., 2019)
▶ Not realistic
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Dependence modeling

Separable model

t

t + 1t + 2

Non-separable model

t

t + 1

t + 2

V
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Dependence modeling

Towards more realistic modeling: introduce
advection V to relax separability

γL(h, τ) = γ(h − τV , τ)

⇒ 1
2γL(h, τ) = β1∥h − τV ∥α1 + β2|τ |α2

▶ Parameters: Θ = (β1, β2, α1, α2, V )

Non-separable model

t

t + 1

t + 2

V
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Parameter estimation with advection

Goal: Estimate variogram parameters Θ = (β1, β2, α1, α2, V )

Joint exceedances count

Kh,τ (u) =
∑

(s i ,s j )∈N (h)

∑
(ti ,tj )∈N (τ)

1{Xsi ,ti >u, Xsj ,tj >u}

Asymptotic distribution (large u) on r-Pareto:

Kh,τ ∼ B

 ∑
(s0,t0)∈R

#{s : (s, s0) ∈ N (h)}, χr,Θ(h, τ)


with
▶ R is a subset of spatio-temporal conditioning points
▶ N (h) the set of pairs of sites separated by h
▶ N (τ) the set of pairs of times separated by τ
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Parameter estimation with advection

Asymptotic distribution (large u) on r-Pareto:

Kh,τ ∼ B

 ∑
(s0,t0)∈R

#{s : (s, s0) ∈ N (h)}, χr,Θ(h, τ)



Composite log-likelihood maximization

ℓC (Θ) ∝
∑

(s0,t0)∈R

∑
(s,s0)∈N (h)

∑
(t,t0)∈N (τ)

ks,t log χr,Θ(h, τ) + (1 − ks,t) log(1 − χr,Θ(h, τ))

with ks,t = 1{Xs,t >u, Xs0,t0 >u}, for large u

▶ Optimization: maximization of ℓC (Θ) with respect to Θ
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Validation on simulations

Without advection With advection

Parameter estimation on 100 simulations of 1000 replicates of r -Pareto processes with 25 sites and 30
time observations
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Conclusion

Precipitation

Dry

Moderate Extreme

Univariate

Dependence

EGPD GPD

Stochastic precipitation generator

r -Pareto

Wind
Covariate
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Rainfall data - HSM

Rainfall amounts on CNRS and Polytech rain gauges
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Additional data

▶ Source: COMEPHORE, Météo France

▶ Time period: [1997, 2023[

▶ Temporal resolution: Every hour

▶ Spatial resolution: 1 km2

More consistent data: Both datasets + Neural Network Downscaling.
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Modeling both moderate and extreme precipitation

Generalized Pareto Distribution Extended GPD4

Hξ

(
x − u

σ

)
=
{(

1 + ξ x−u
σ

)−1/ξ

+ if ξ ̸= 0 ,

e− x−u
σ if ξ = 0 ,

where a+ = max(a, 0), σ > 0, x − u > 0

▶ Models extreme precipitation
▶ Depends on a threshold choice

F (x) = G
(

Hξ

( x
σ

))
,

where G(x) = xκ, κ > 0

▶ Models moderate and extreme precipitation
▶ Avoids a threshold choice

4Naveau et al., 2016
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Estimation of the separable variogram parameters

Case of additive separability: γ(h,τ )
2 = β1∥h∥α1 + β2|τ |α2 , 0 < α1, α2 ≤ 2 , β1, β2 > 0

Spatio-temporal

χ(h, τ) = 2
(

1 − ϕ

(√
1
2 γ(h, τ)

))

Spatial
η (χ(h, 0)) = log β1 + α1 log∥h∥ , h ∈ ΛS

Temporal
η (χ(0, τ)) = log β2 + α2 log τ , τ ∈ ΛT

Transformation:
η(χ) = 2 log

(
ϕ−1

(
1 − 1

2 χ
))
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2 = β1∥h∥α1 + β2|τ |α2 , 0 < α1, α2 ≤ 2 , β1, β2 > 0

Spatio-temporal

χ(h, τ) = 2
(

1 − ϕ

(√
1
2 γ(h, τ)

))

Spatial
η (χ(h, 0)) := c1 + α1xh , h ∈ ΛS

Temporal
η (χ(0, τ)) := c2 + α2xτ , τ ∈ ΛT

Transformation:
η(χ) = 2 log

(
ϕ−1

(
1 − 1

2 χ
))

Weighted Least Squares Estimation (WLSE)(
ĉi
α̂i

)
= argminci ,αi

∑
x

wx
(

η
(

χ̂
)

− (ci + αi x)
)2
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Spatial dependence estimation

Empirical spatial extremogram
For a fixed t ∈ T and q a high quantile,

χ̂
(t)
q (h, 0) =

1
|Nh |

∑
i,j | (si ,sj )∈Nh

1{X∗
si ,t >q ,X∗

sj ,t >q}

1
|S|

∑|S|
i=1

1{X∗
si ,t >q}

,

where Ch are equifrequent distance classes and
Nh =

{
(s i , s j ) ∈ S2

∣∣ ∥s i − s j ∥ ∈ Ch
}

.

Transformation and WLSE
=⇒

Spatial variogram γ̂(h, 0) = 2β̂1∥h∥α̂1
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Temporal dependence estimation

Empirical temporal extremogram
For a location s ∈ S, a high quantile q and tk ∈ {t1, . . . , tT },

χ̂
(s)
q (0, τ) =

1
T−τ

∑T−τ

k=1
1{X∗

s,tk
>q ,X∗

s,tk +τ
>q}

1
T

∑T
k=1

1{X∗
s,tk

>q}

Transformation and WLSE
=⇒

Temporal variogram γ̂(0, τ) = 2β̂2|τ |α̂2
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Parameter estimation with advection

Composite log-likelihood maximization

ℓC (Θ) ∝
∑

(s0,t0)∈R

∑
(s,s0)∈N (h)

∑
(t,t0)∈N (τ)

ks,t log χr,Θ(h, τ) + (1 − ks,t) log(1 − χr,Θ(h, τ))

with ks,t = 1{Xs,t >u, Xs0,t0 >u}, for large u

Wind in t0

Wind-informed advection:

V = η1 · |V w |η2 · sign(V w ), η1, η2 > 0

⇒ Θ = (β1, β2, α1, α2, η1, η2)

with V w real wind data.
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