MODÉLISATION STATISTIQUE DE PRÉCIPITATIONS URBAINES À FINE ÉCHELLE SPATIO-TEMPORELLE

ERFJLERJLZRGJ

JDS Bruxelles 2023

Chloé SERRE-COMBE¹ Nicolas MEYER¹ Thomas OPITZ² Gwladys TOULEMONDE¹

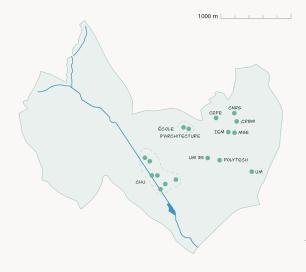
¹Univ. Montpellier, CNRS, IMAG, Inria, France ²INRAE, BioSP, Avignon, France

ZONE D'ÉTUDE

► Situation géographique : Bassin versant du Verdanson, affluent du Lez, situé en zone urbaine

Contexte:
 Épisodes méditerranéens, risque d'inondations

STATIONS DE MESURES



► **Source :** Observatoire urbain de l'HydroScience Montpellier ¹

▶ **Période:** 2019 à 2022

► Fine échelle temporelle : À la minute avec agrégation à 5 minutes

► Fine échelle spatiale : Inter-distance entre 77 et 1531 mètres

 $S = \{17 \text{ pluviomètres}\}$

¹FINAUD-GUYOT et al. 2023

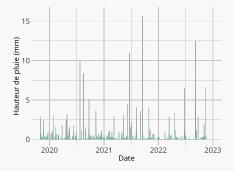
MODÉLISATION UNIVARIÉE DE LA PLUIE

Generalized Pareto Distribution

$$\overline{H}_{\xi}\left(\frac{y}{\sigma}\right) = \begin{cases} \left(1 + \xi \frac{y}{\sigma}\right)^{-1/\xi} & \text{si } \xi \neq 0, \\ e^{-\frac{y}{\sigma}} & \text{si } \xi = 0, \end{cases}$$

où
$$a_+ = \max(a, 0), \xi \in \mathbb{R}, \sigma > 0$$
 et $y > 0$

- ► Modélise les pluies extrêmes
- Dépend d'un choix de seuil



MODÉLISATION UNIVARIÉE DE LA PLUIE

Generalized Pareto Distribution

$$\overline{H}_{\xi}\left(\frac{y}{\sigma}\right) = \begin{cases} \left(1 + \xi \frac{y}{\sigma}\right)^{-1/\xi} & \text{si } \xi \neq 0, \\ e^{-\frac{y}{\sigma}} & \text{si } \xi = 0, \end{cases}$$

où
$$a_+ = \max(a, 0), \, \xi \in \mathbb{R}, \, \sigma > 0 \text{ et } y > 0$$

- ► Modélise les pluies extrêmes
- Dépend d'un choix de seuil

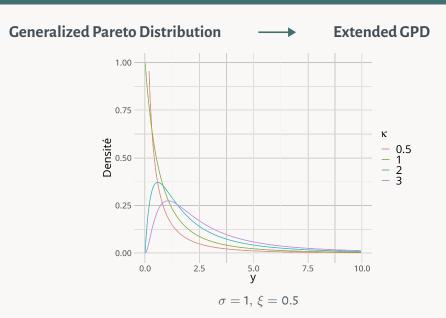
Extended GPD¹

$$F_Y(y)=G\left(H_{\xi}\left(rac{y}{\sigma}
ight)
ight),$$
 avec $G(x)=x^{\kappa},\ \kappa>0$

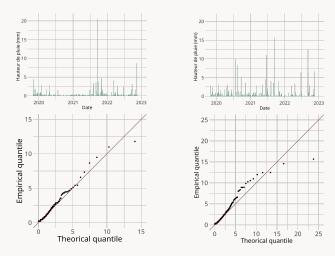
- Modélise les pluies hautes et modérées
- Évite le choix d'un seuil

¹Naveau et al. 2016

MODÉLISATION UNIVARIÉE DE LA PLUIE



AJUSTEMENT D'UNE EGPD

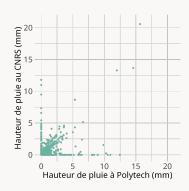


Ajustement sur les sites du CNRS et de Polytech ($\widehat{\kappa}=$ 0.56, $\widehat{\sigma}=$ 0.26 et $\widehat{\xi}=$ 0.51)

Mesure de dépendance extrémale

Soient $U \sim \mathcal{U}(0,1)$ et $V \sim \mathcal{U}(0,1)$ On définit

$$\chi = \lim_{u \to 1} \chi(u)$$
, avec $\chi(u) = \mathbb{P}(U > u \mid V > u)$



Variogramme

Soit $X = \{X(s), s \in S\}$ un processus. Pour tout $v \in S$, le variogramme γ est défini

$$2\gamma(\nu) = \mathbb{V}\left(X(s+\nu) - X(s)\right)$$

Cadre: $X = \{X(s,t), (s,t) \in \mathcal{S} \times [0,\infty)\}$ un processus max-stable de Brown-Resnick, strictement stationnaire et isotrope (BUHL et al. 2019).

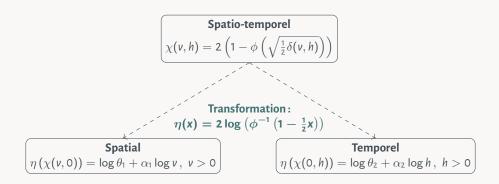
Extrémogramme spatio-temporel d'un processus de Brown-Resnick

Soient $v \ge 0$ un lag spatial et $h \ge 0$ un lag temporel. On a

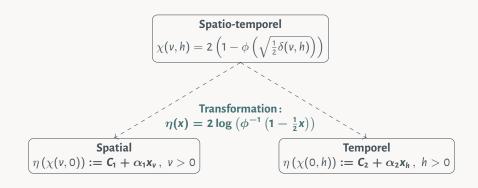
$$\chi(v,h) = 2\left(1 - \phi\left(\sqrt{\frac{1}{2}\delta(v,h)}\right)\right)$$

avec ϕ la f.d.r. d'une loi normale centrée-réduite et δ le variogramme associé.

Hypothèse de séparabilité additive : $\frac{\delta(\nu,h)}{2} = \theta_1 \nu^{\alpha_1} + \theta_2 h^{\alpha_2}, \ 0 < \alpha_1, \alpha_2 \le 2, \ \theta_1, \theta_2 > 0$



Hypothèse de séparabilité additive : $\frac{\delta(\nu,h)}{2} = \theta_1 \nu^{\alpha_1} + \theta_2 h^{\alpha_2}, \ 0 < \alpha_1, \alpha_2 \le 2, \ \theta_1, \theta_2 > 0$



Modèle linéaire pondéré (BUHL et al. 2019)

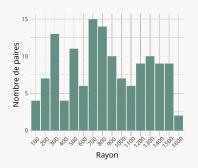
ESTIMATION DE LA DÉPENDANCE SPATIALE

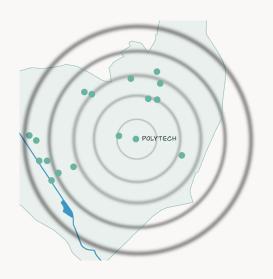
Considération de rayons autour de chaque site

Pour tout lag spatial $v = k \times \Delta v$, $k \in 1, 2, ...$, on définit

$$N(v) = \{(s_i, s_j) \mid ||s_i - s_j|| \in]v - \Delta v, v]\}$$

Nous prenons $\Delta v = 100$ mètres.





ESTIMATION DE LA DÉPENDANCE SPATIALE

Extrémogramme spatial

Soit v fixé.

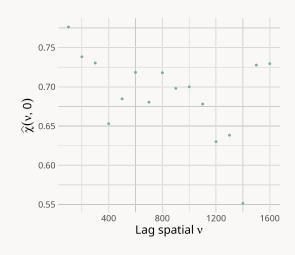
Pour tout temps t et pour tout $(s_i, s_i) \in N(v)$,

$$\chi_{ij,q}^{(t)}(\nu,0) = \frac{\mathbb{P}\left(X(s_i,t) > q, X(s_j,t) > q\right)}{\mathbb{P}\left(X(s_i,t) > q\right)}$$

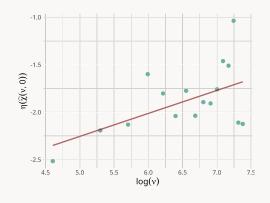
Estimateur:

$$\widehat{\chi}_{q}^{(t)}(\nu,0) = \frac{\frac{1}{|N(\nu)|} \sum_{i,j \mid (s_{i},s_{j}) \in N(\nu)} \mathbb{1}_{\left\{X(s_{i},t) > q \mid X(s_{j},t) > q\right\}}}{\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathbb{1}_{\left\{X(s_{i},t) > q\right\}}}$$

avec q un quantile assez grand.



MODÈLE LINÉAIRE PONDÉRÉ SPATIAL



Estimation des paramètres

$$\begin{pmatrix} \widehat{\mathsf{C}}_1 \\ \widehat{\alpha}_1 \end{pmatrix} = \underset{\mathsf{C}_1, \alpha_1}{\mathsf{argmax}} \sum_{\nu} w_{\nu} \left(\eta \left(\widehat{\chi}(\nu, 0) \right) - \left(\mathsf{C}_1 + \alpha_1 \mathsf{x}_{\nu} \right) \right)^2$$

Résultats

	Estimation	Écart-type
\widehat{C}_1	-3.465***	0.605
$\widehat{\alpha}_1$	0.242*	0.093
*p-value<0.05; *** p-value<0.001		

ESTIMATION DE LA DÉPENDANCE TEMPORELLE

Avec $\Delta h = 5$ minutes.

Extrémogramme temporelle

Soit *h* fixé.

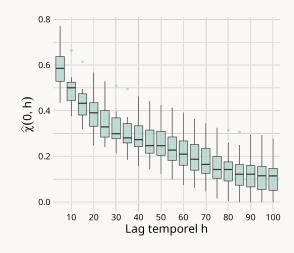
Pour un site s et pour tout temps t

$$\chi_{t,q}^{(s)}(\mathbf{0},h) = \frac{\mathbb{P}\left(X(s,t) > q, X(s,t+h) > q\right)}{\mathbb{P}\left(X(s,t) > q\right)}$$

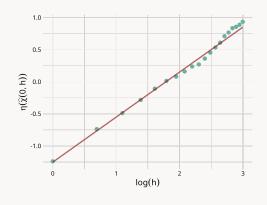
Estimateur:

$$\widehat{\chi}_{q}^{(s)}(0,h) = \frac{\frac{1}{T-h} \sum_{k=1}^{T-h} \mathbb{1}_{\{X(s,t_k) > q, X(s,t_k+h) > q\}}}{\frac{1}{T} \sum_{k=1}^{T} \mathbb{1}_{\{X(s,t_k) > q\}}}$$

avec q un quantile assez grand et $t_k \in \{t_1, \ldots, t_T\}$.



MODÈLE LINÉAIRE PONDÉRÉ TEMPOREL



Estimation des paramètres

$$\begin{pmatrix} \widehat{\mathsf{C}}_{\mathsf{2}} \\ \widehat{\alpha}_{\mathsf{2}} \end{pmatrix} = \underset{\mathsf{C}_{\mathsf{2}}, \alpha_{\mathsf{2}}}{\mathsf{argmax}} \sum_{\mathsf{h}} \mathsf{w}_{\mathsf{h}} \left(\eta \left(\widehat{\chi} (\mathsf{0}, \mathsf{h}) \right) - \left(\mathsf{C}_{\mathsf{2}} + \alpha_{\mathsf{2}} \mathsf{x}_{\mathsf{h}} \right) \right)^{2}$$

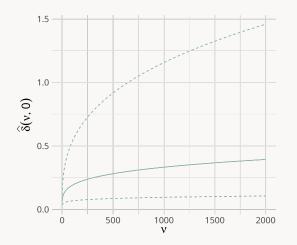
Résultats

	Estimation	Écart-type
\widehat{C}_2	-1.252***	0.023
$\widehat{\alpha}_{2}$	0.702***	0.012
***p-value<0.001		

VARIOGRAMME EMPIRIQUE

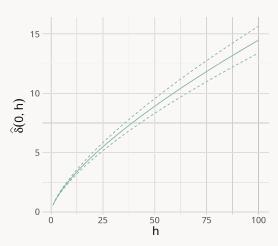
Spatial

$$\widehat{\delta}(v,0) = 2\widehat{\theta}_1 v^{\widehat{\alpha}_1}$$



Temporel

$$\widehat{\delta}(0,h) = 2\widehat{\theta}_2 h^{\widehat{\alpha}_2}$$



PERSPECTIVES

- Structure des décalages spatiaux
- Cas de non séparabilité avec variogrammes plus complexes
- ► Structure anisotrope et advection
- ► Modélisation multi-échelle

RÉFÉRENCES

- Buhl, Sven et al. (2019). "Semiparametric estimation for isotropic max-stable space-time processes". In: DOI: 10.3150/18-BEJ1061.
- FINAUD-GUYOT, Pascal et al. (2023). Rainfall data collected by the HSM urban observatory (OMSEV). DOI: 10.23708/67LC36.
- NAVEAU, Philippe et al. (2016). "Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection". In: Water Resources Research. DOI: 10.1002/2015WR018552.