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General context - Montpellier, France

Floods in Montpellier, September 2022 and August
2015 (Midi Libre)

▶ Mediterranean events, localized rainfall
▶ Urban area, flood risks
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Rain gauges network - OMSEV1

S = {20 rain gauges} ⊂ R2 and T ⊂ R+

▶ Study area: Verdanson water catchment

▶ Source: Urban observatory of HydroScience
Montpellier (HSM)2

▶ Time period: [Sept.2019, Jan.2025[

▶ Temporal resolution: 5 minutes

▶ Spatial resolution: 77 m to 2259 m

1Observ. Montpellierain et au Sud de l’Eau dans la Ville
2Finaud-Guyot et al., 2023
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Modeling Univariate Precipitation

u

Time

Rainfall X > 0

Extreme ∼ GPD

▶ Generalized Pareto Distribution (GPD)1

X | X > u ∼ Hξ︸︷︷︸
GPD(ξ,σ,u)

with ξ ∈ R, σ > 0.

1Pickands III, 1975
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Modeling Univariate Precipitation

u = 0 Time

Rainfall X > 0

Moderate and Extreme
∼ EGPD

▶ Extended Generalized Pareto Distribution (EGPD)2

X ∼ G(Hξ)︸ ︷︷ ︸
EGPD(ξ,σ,κ)

with G(x) = xκ, κ > 0

2Naveau et al., 2016
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EGPD fitting

EGPD fitting for two rain gauges, CEFE (left) and IEM (right) with left-censoring and 95% CI
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Spatio-temporal dependence modeling

Precipitation

Moderate Extreme

EGPD GPD

Univariate

Dependence
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Spatio-temporal dependence measures

Rainfall random field: X = {Xs,t , (s, t) ∈ S × T }

Let ΛS ⊂ R2
+ and ΛT ⊂ R+ be sets of spatial and temporal lags respectively.

Variogram (Matheron, 1963)

γ(h, τ) = 1
2Var(Xs,t − Xs+h,t+τ )

• Quantifies variability
• Higher γ(h, τ) → weaker dependence

h ∈ ΛS , τ ∈ ΛT , X∗
s,t uniform margins.

Extremogram (Davis and Mikosch, 2009)

χ(h, τ) = lim
q→1

P(X ∗
s,t > q | X ∗

s+h,t+τ > q)

• Measures tail dependence
• Higher χ(h, τ) → stronger dependence
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r-Pareto process

Definition (de Fondeville and Davison, 2018)
For all s ∈ S and t ∈ T , a risk function r(X) = Xs0,t0 ,

u−1Xs,t | Xs0,t0 > u d−→ Ys,t with Ys,t = ReWs,t −Ws0,t0 −γ(s−s0,t−t0) ,

where (s0, t0) is a space-time location, u is a high threshold, R ∼ Pareto(1), Ws,t is a Gaussian process.

Random simulation
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Dependence modeling

Spatio-temporal extremogram with a Brown-Resnick dependence
Let h ∈ ΛS and τ ∈ ΛT . We have

χ(h, τ) = 2

(
1 − ϕ

(√
1
2γ(h, τ)

))
with ϕ the std normal c.d.f. and γ the variogram of W .

Separable model: Fractional Brownian motion with additive separability.

γ(h, τ)
2 = β1∥h∥α1 + β2|τ |α2

with 0 < α1, α2 ≤ 2, β1, β2 > 0.
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Dependence modeling

Separable model

t

t + 1t + 2

Non-separable model

t

t + 1

t + 2

V
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Dependence modeling

Towards more realistic modeling: introduce
advection V to relax separability

γL(h, τ) = γ(h − τV , τ)

⇒ 1
2γL(h, τ) = β1∥h − τV ∥α1 + β2|τ |α2

▶ Parameters: Θ = (β1, β2, α1, α2, V )

Non-separable model

t

t + 1

t + 2

V

10 / 24



All rainfall events

Space

Time

r -Pareto process:
Each episode is characterized
by (s0, t0) for which Xs0,t0 > u
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Select episodes

Space

Time

dmin

T
m

in

Episode selection:
Only episodes separated by
• spatial distance ≥ dmin
• temporal gap ≥ Tmin

⇒ reduces dependence
between selected episodes ∈ E .
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Count joint exceedances per episode

Space

Time

ke

ke

ke

Joint exceedances

ke(s, t) = 1{Xs0,t0 >u, Xs,t >u},
with (s, t) ∈ N (h, τ)

ke(s, t) ∈ [0, 1] ∼ Bernoulli(χΘ(h, τ))

with N (h, τ) = {(s, t) ∈ S × T | s − s0 = h, t − t0 = τ}
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Joint exceedances

Space

Time

ke

ke

ke

Total joint exceedances:

ke(s, t) ∈ [0, 1] ∼ Bernoulli(χΘ(h, τ))

⇒ Kh,τ =
∑
e∈E

∑
(s,t)∈N (h,τ)

ke(s, t)

Composite Binomial likelihood:
B (Ntot(h), χΘ(h, τ))

with N (h, τ) = {(s, t) ∈ S × T | s − s0 = h, t − t0 = τ}
and Ntot(h) = |E| × # {s ∈ S | s − s0 = h}
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Parameter estimation

Bernoulli contributions (large u):

ke(s, t) = 1{Xs0,t0 >u, Xs,t >u}, (s, t) ∈ N (h, τ),

each treated as
ke(s, t) ∼ Bernoulli

(
χΘ(h, τ)

)
.

Composite Binomial likelihood:

B(Ntot(h), χΘ(h, τ)) , Ntot(h) = |E| #{s ∈ S : s − s0 = h}.

Composite log-likelihood

ℓC (Θ) ∝
∑
e∈E

∑
(h,τ)∈ΛS ×ΛT

∑
(s,t)∈N (h,τ)

ke(s, t) log χΘ(h, τ) + (1 − ke(s, t)) log(1 − χΘ(h, τ)).

▶ Optimization via maximization of ℓC (Θ).
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Validation: constant advection

Without advection With advection

50 simulations, 500 replicates, 25 sites, 30 time steps
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Episode-wise advection to global model

Vemp =


V(1)

V(2)

...
V(N)

 ∈ RN×2

one component = one episode

Vfinal = η1 sign(Vemp) ⊙
∣∣Vemp

∣∣⊙η2 ∈ RN×2global model

unified transformation ⇒ η to estimate

50 simulations, 500 replicates, 25 sites, 30 time steps
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Episode-wise advection to global model

Vemp =


V(1)

V(2)

...
V(N)

 ∈ RN×2

one component = one episode

Vfinal = η1 sign(Vemp) ⊙
∣∣Vemp

∣∣⊙η2 ∈ RN×2global model

unified transformation ⇒ η to estimate

Challenge:
OMSEV data ⇒ limited information for advection

Approach:
Fusion COMEPHORE–OMSEV → more reliable advection
Advection classes → class-dependent η = (η1, η2)

COMEPHORE pixels
Météo France
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Advection estimation on real data

For one episode (COMEPHORE):

t0 − 1 t0 t0 + 1

V emp is estimated from rain storm barycenter displacement within a time window.
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OMSEV results

▶ Advection group: relatively strong (∥V ∥ > 2 km/h), north direction ⇒ 46 episodes
▶ Fixed η from COMEPHORE data: η̂1 = 0.667, η̂2 = 1.757 (km/h).
▶ OMSEV estimates (m/5 min): β̂1 = 0.066, β̂2 = 0.747, α̂1 = 0.480, α̂2 = 0.691
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Advection: V = (2.5, 4.33) km/h

Estimated variogram with V = (2.5, 4.3) km/h
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Stochastic simulation of precipitation events

Precipitation OMSEV

Moderate Extreme

Univariate

Dependence

EGPD GPD

Stochastic precipitation generator

r -Pareto

22 / 24



Stochastic simulation of precipitation events

Moderate advection intensity
1000 simulations vs 34 observations

Moderate advection intensity
95% CI

Challenge:
▶ Limited information to estimate advection: incorporate wind data
▶ Advection class definition still needs refinement
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Conclusion & Outlook

Precipitation OMSEV

Moderate Extreme

Univariate

Dependence

EGPD GPD

Stochastic precipitation generator

r -Pareto

Wind
Covariate

Additional data: COMEPHORE

Advection

EGPD

r -Pareto
Non-separable dependence

Next: richer variogram (Gneiting)
+ advection class definition
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Rainfall data - OMSEV

Rainfall amounts on CNRS and Polytech rain gauges
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Additional data

▶ Source: COMEPHORE, Météo France

▶ Time period: [1997, 2023[

▶ Temporal resolution: Every hour

▶ Spatial resolution: 1 km2

More consistent data: Both datasets + Neural Network Downscaling.
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Modeling both moderate and extreme precipitation

Generalized Pareto Distribution Extended GPD1

Hξ

(
x − u

σ

)
=
{(

1 + ξ x−u
σ

)−1/ξ

+ if ξ ̸= 0 ,

e− x−u
σ if ξ = 0 ,

where a+ = max(a, 0), σ > 0, x − u > 0

▶ Models extreme precipitation
▶ Depends on a threshold choice

F (x) = G
(

Hξ

( x
σ

))
,

where G(x) = xκ, κ > 0

▶ Models moderate and extreme precipitation
▶ Avoids a threshold choice

1Naveau et al., 2016
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Estimation of the separable variogram parameters

Case of additive separability: γ(h,τ )
2 = β1∥h∥α1 + β2|τ |α2 , 0 < α1, α2 ≤ 2 , β1, β2 > 0

Spatio-temporal

χ(h, τ) = 2
(

1 − ϕ

(√
1
2 γ(h, τ)

))

Spatial
ζ (χ(h, 0)) = log β1 + α1 log∥h∥ , h ∈ ΛS

Temporal
ζ (χ(0, τ)) = log β2 + α2 log τ , τ ∈ ΛT

Transformation:
ζ(χ) = 2 log

(
ϕ−1

(
1 − 1

2 χ
))
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Estimation of the separable variogram parameters

Case of additive separability: γ(h,τ )
2 = β1∥h∥α1 + β2|τ |α2 , 0 < α1, α2 ≤ 2 , β1, β2 > 0

Spatio-temporal

χ(h, τ) = 2
(

1 − ϕ

(√
1
2 γ(h, τ)

))

Spatial
η (χ(h, 0)) := c1 + α1xh , h ∈ ΛS

Temporal
η (χ(0, τ)) := c2 + α2xτ , τ ∈ ΛT

Transformation:
ζ(χ) = 2 log

(
ϕ−1

(
1 − 1

2 χ
))

Weighted Least Squares Estimation (WLSE)(
ĉi
α̂i

)
= argminci ,αi

∑
x

wx
(

ζ
(

χ̂
)

− (ci + αi x)
)2
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Spatial dependence estimation

Empirical spatial extremogram
For a fixed t ∈ T and q a high quantile,

χ̂
(t)
q (h, 0) =

1
|Nh |

∑
i,j | (si ,sj )∈Nh

1{X∗
si ,t >q ,X∗

sj ,t >q}

1
|S|

∑|S|
i=1

1{X∗
si ,t >q}

,

where Ch are equifrequent distance classes and
Nh =

{
(s i , s j ) ∈ S2

∣∣ ∥s i − s j ∥ ∈ Ch
}

.

Transformation and WLSE
=⇒

Spatial variogram γ̂(h, 0) = 2β̂1∥h∥α̂1
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Temporal dependence estimation

Empirical temporal extremogram
For a location s ∈ S, a high quantile q and tk ∈ {t1, . . . , tT },

χ̂
(s)
q (0, τ) =

1
T−τ

∑T−τ

k=1
1{X∗

s,tk
>q ,X∗

s,tk +τ
>q}

1
T

∑T
k=1

1{X∗
s,tk

>q}

Transformation and WLSE
=⇒

Temporal variogram γ̂(0, τ) = 2β̂2|τ |α̂2

24 / 24



Non-separability

Empirical spatio-temporal variogram γ(h, τ) on OMSEV data
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Stochastic simulation of precipitation events

Simulation vs Observation - Episode 100 High advection intensity - South direction
95% CI over 1000 simulations vs 20 observations
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